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Abstract. Amodern GPU integrates tens of streaming multi-processors
(SMs) on the chip. When used in data centers, the GPUs often su↵er from
under-utilization for exclusive access reservations, hence demanding mul-
titasking (i.e., co-running applications) to reduce the total cost of own-
ership. However, latency-critical applications may experience too much
interference to meet Quality-of-Service (QoS) targets. In this paper, we
propose a software system, FLARE, to spatially share commodity GPUs
between latency-critical applications and best-e↵ort applications to en-
force QoS as well as maximize overall throughput. By transforming the
kernels of best-e↵ort applications, FLARE enables both SM partitioning
and thread block partitioning within an SM for co-running applications.
It uses a microbenchmark guided static configuration search combined
with online dynamic search to locate the optimal (near-optimal) strategy
to partition resources. Evaluated on 11 benchmarks and 2 real-world ap-
plications, FLARE improves hardware utilization by an average of 1.39X
compared to the preemption-based approach.

1 Introduction

Datacenters are gaining increasing popularity as they significantly reduce the
computation and storage cost for clients. However, the tremendous up-front in-
vestment in servers accounts for 50-70% of the total cost of ownership [4]. The
problem is exacerbated by the wide adoption of expensive high-end GPUs to
leverage the massive parallelism to accelerate various types of workloads, such
as deep neural networks and graph analytics [28,11]. Unfortunately, while CPU
utilization in servers is already low (ranging from 10% to 70% [18]), GPU under-
utilization is more severe due to the complex dynamic behaviors of GPU appli-
cations [8].

A fundamental cause of hardware under-utilization is the strict QoS require-
ments of latency-critical (LC) applications (e.g., web services and deep learning
inference). To meet the QoS target, a conservative scheduler will reserve the
entire server for the LC application. A promising solution is multitasking, which
co-locates best-e↵ort (BE) applications together with the LC application to share
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the same server and hence the GPUs. However, the BE application may interfere
with the LC application, resulting in unacceptable performance degradation for
LC requests. Notably, when both co-running applications heavily use the GPU,
the slowdown of the LC requests could be over 10x [31].

As far as we know, Baymax [8] and Laius [32] are the only software systems
that enforce QoS for shared GPU systems. Baymax assumes that the GPU is a
non-preemptable processor and hence a long-running kernel reserves the entire
GPU. However, a high-end GPU has tens of streaming multi-processors (SMs),
which cannot be fully utilized by a single kernel. As we show in Section 2, GPU
kernels may scale poorly in terms of SMs or threads within an SM. Laius takes
advantage of the hardware-based partitioning capability but is limited to SM-
level partitioning, therefore failing to addressing the scalability issues within
SMs.

In this paper, we aim at improving GPU utilization by flexibly partitioning
the abundant computational resource between co-running BE and LC applica-
tions. We assume that the source code of BE is available and an BE application
is constantly running on the GPU when the LC application arrives. Instead of
only coordinating GPU kernel executions, we allow a BE application to yield
just enough resource to meet the QoS target of the LC kernel. To achieve this
goal, we face multiple challenges. First, while one only needs to consider a 1-D
resource space for CPU core allocation [20], the GPU has many SMs and each
SM concurrently runs several groups of threads (i.e., thread blocks), thus forming
a 2-D resource space. Second, since the GPU by default runs the launched ker-
nels in an FIFO manner, a kernel from the BE application may use up all SMs,
thus blocking the kernel of the LC application. We need to design a software
mechanism to enable the two kernels to run simultaneously on di↵erent parts of
the GPU. Third, the co-running kernels interfere with each other on a variety of
hardware resources, including shared interconnect, L1 cache, L2 cache, streaming
cores, and device memory. Therefore, quantifying the performance degradation
given a partitioning configuration is di�cult. Finally, we try to enforce QoS and
maximize utilization which are two conflicting goals. Specifically, by allocating
more resources to the LC application, we have a better chance to meet the QoS
goal. But it probably reduces the overall throughput at the same time.

To overcome the challenges and improve utilization of commodity GPUs, we
design and implement a software system, FLARE, which enables flexible GPU
sharing, meets QoS goals for LC applications, and maximizes throughput for
BE applications. FLARE transforms the kernel of the BE application to be able
to yield k (1  k  MaxBlksPerSM) thread blocks on a subset of n SMs
(1  n  MaxSMs). The pair n k is called a configuration. The threads of
the LC kernel can then be scheduled to run on the released hardware resource.
The key novelty of FLARE is its intelligent runtime to quickly figure out the
optimal GPU resource partitioning strategy by avoiding pitfalls from two popu-
lar existing approaches as follows. The performance model-based approach uses
o✏ine training to predict the best configuration [8,33], but its accuracy may
su↵er from input sensitivity and complicated hardware contention. On the other
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hand, a pure dynamic approach (e.g., online profiling and adjusting [19,34]) may
not be responsive enough. Worse, it may explore detrimental configurations that
lead to hampered QoS or hardware under-utilization. FLARE employs a hybrid
methodology. It uses microbenchmarks to characterize the co-run performance
degradation space, so given two co-running kernels it quickly predicts an initial
configuration to use. Then FLARE leverages the degradation space to dynam-
ically search for the optimal configuration. We show in comprehensive experi-
ments that FLARE outperforms the preemption-based approach while satisfying
the QoS targets.

2 Background

Driven by the demand for high-throughput capabilities, the GPU has evolved
to leverage massive parallelism with a many-core design to provide huge compu-
tational throughput and memory bandwidth. The cores of NVIDIA GPUs are
called Streaming Multiprocessors, each of which can simultaneously host mul-
tiple active thread blocks (also known as Cooperative Thread Array) contexts.
The number of active thread blocks that an SM can host depends on the hard-
ware resource of the SM (i.e., register file size) and the resource requirement of
the thread blocks. When a thread block runs on an SM, it is executed in a SIMD
fashion with 32 threads (called a warp) at a time.
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Fig. 1: Graphics Processing Unit
(GPU)

Fig. 2: QoS violation for co-runs
when the GPU is unpreemptable.

Conceptually, all the thread blocks of the launched kernels wait in a queue.
The hardware implements a FIFO thread block scheduler, which dispatches the
waiting thread blocks to SMs as long as the available hardware resource can
satisfy the resource demands. Hence, a kernel’s thread blocks are guaranteed to
be scheduled first before any other thread block of a later launched kernel.

Starting from the Fermi architecture, NVIDIA GPUs support concurrent
kernel execution. Later, NVIDIA introduced the Multi-Process Service (MPS),
which enables kernels from di↵erent applications to be executed simultaneously
on the same GPU. However, due to significant context switch overhead, the
GPU hardware does not support temporal core sharing. Consequently, the co-
running kernels spatially share a GPU only when the earlier launched kernel
cannot consume all the computational resources. Due to the organization of the
hardware, Fig. 1 shows an interesting resource sharing scenario. The co-running
thread blocks from both kernel A and B on the same SM compete to use the L1
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cache and ALUs and all the currently running thread blocks contend for use of
the interconnect, L2 cache and global memory bandwidth.

3 Motivation and Challenges

3.1 QoS Issues of Non-Preemptable Kernels

To understand the detrimental e↵ect of non-preemptable kernel execution on
QoS violation, we run 40 pairs of kernels (details in Section 5) on an NVIDIA
Volta GPU. Fig. 2 shows the performance degradation of the LC kernels when
they are immediately launched after the BE kernels shown on the X axis. Observe
that QoS is violated for all the pairs even if the QoS target is as large as 10 times
of the corresponding solo-run execution time when sharing is disabled. This is
because the entire time the BE kernel is finishing normally, the LC kernel has
to wait in queue, a clearly unacceptable solution.

3.2 Scalability Issues of Preemption-Based Solutions

Fig. 3: Solo-run scalability with re-
spect to the number of SMs

Fig. 4: Solo-run scalability with re-
spect to the number of thread blocks
on each SM

Recent work, such as FLEP [31] and E�sha [6], has proposed low-overhead
software-based mechanisms to realize preemption on GPUs. With the capabil-
ity of preemption, we can easily address the QoS issue by preempting the BE
kernel whenever an LC arrives. However, the drawback of preemption is that
LC kernels monopolize all the available resources regardless of how e�ciently
it will utilize them. We show the scalability of 7 benchmarks in Fig. 3 and
Fig. 4 when we respectively increase the number of SMs and the number of
thread blocks within each SM. Since the default scheduling uses up the SMs and
thread blocks, the results show that less resource does not necessarily lead to
worse performance. Moreover, di↵erent applications may have di↵erent scaling
characteristics. For example, MM (matrix multiplication) prefers more compu-
tational resources, while MD’s performance culminates with a small portion of
the resources (i.e., 26 SMs or 2 thread blocks per SM). Therefore, we need an
approach to appropriately partition the GPU to simultaneously corun kernels
for the optimal utilization.
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3.3 Spatial Co-Running and its Challenges

In order to run a pair of BE and LC application simultaneously, we need a
mechanism for the BE application to be able to yield resources (entire SMs or
thread block slots of SMs) to the LC application. Though the reduced resource
availability and introduced contention cause slowdown for both kernels, we ob-
serve such a mechanism allows one to produce a better trade-o↵ between QoS
guarantees and overall GPU utilization.

Fig. 5: LC kernel speedup with 280 thread blocks being allocated under di↵erent
configurations

To understand the complexity of the interference due to co-running, we run
40 kernel pairs with 280 thread blocks allocated to each of the LC kernels.
Fig. 5 shows the performance degradation of the LC kernels with four di↵erent
configurations. On the X axis, the notation A B represents a BE kernel A co-
running with a LC kernel B. Observe that the slowdown varies significantly
across LC kernels or even the co-runs of the same LC kernel with di↵erent BE
kernels. Fig. 6 reports the overall throughput improvement (defined in Section 5)
and demonstrates the di�culty of predicting the best configuration for the co-
runs.

Fig. 6: Overall throughput improvement under di↵erent configurations

4 FLARE

4.1 System Overview

The goal of FLARE is to enable flexible sharing between LC and BE applications
and optimize resource partitioning to enforce QoS as well as maximize overall
throughput of co-run pairs. FLARE addresses the trade-o↵ between latency and
throughput based on o✏ine and online dynamic search algorithms to quickly fig-
ure out an optimized co-running configuration. The system, as shown in Fig. 7,
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consists of the following three components:
Kernel Transformation FLARE transforms the BE application to allow it to
yield an arbitrary number of thread blocks on each SM. Note that we assume
no access to the source code of the kernels of LC applications submitted by
users, but the LC kernels can automatically use the yielded resources thanks to
Nvidia’s support of concurrent kernel executions.
Initial Configuration Selection To address the problem of unavailable LC
applications for o✏ine profiling, FLARE co-runs pairs of diverse microbench-
marks with many resource sharing configurations to characterize the perfor-
mance degradation space. Based on the characterization, when the LC appli-
cation arrives, FLARE only profiles its kernel invocation once to quickly model
the performance degradation for both the LC and BE applications. FLARE then
selects an initial configuration to spatially co-run the applications.
Online Refinement During the co-running, FLARE collects the performance
degradation timing data as feedback to dynamically adapt the next configura-
tion to use. By using the co-run degradation data of microbenchmarks, FLARE
intelligently skips configurations and quickly reaches the optimal configuration
to use for spatial co-running.

4.2 Kernel Transformation: Enabling Spatial Sharing

LC Applications
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Initial 
Configuration 

Selection

Online 
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Fig. 7: The FLARE System

Kernel transformation enables the BE
application to yield resources when
a LC application is scheduled to the
same GPU. The design, inspired by
SM-centric transformation [30] and
FLEP [31], runs just enough thread
blocks to occupy the whole GPU.
Specifically, given that a GPU has
N SMs and each SM runs up to K
thread blocks, FLARE schedules N ⇥
K thread blocks, each running the al-
gorithm described in Fig. 8a. Every
thread block first invokes get sm id()

to obtain the ID of the host SM and then atomic get blk id() to get its unique
block ID on that SM, starting from 0. Each thread block stays in a while loop as
long as there are tasks left to execute. At the beginning of each iteration, each
thread block gets a unique ID. If a thread block ID is larger than the specified
value num blks[sm id], which is set by CPU, it means that the thread block
needs to be yielded. To control the spinning overhead, we follow the approached
proposed in [31] to control the granularity of the tasks. Once the resource of the
yielded thread blocks is released, the kernel of the LC application can acquire
the resource and start co-running. After the LC application is finished, the BE
application is notified and launches the same number of thread blocks as yielded
to fully occupy the GPU again.
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Although the algorithm enables arbitrary ways to yield thread blocks, it
requires the CPU and GPU to share the array num blks, containing num SMs
elements, which may incur non-trivial communication overhead when num SMs
is large for high-end GPUs. To address this problem, FLARE uses the algorithm
shown in Fig. 8b to sacrifice flexibility for reduced overhead. In this new design,
FLARE asks the BE kernel to yield the same number of thread blocks (i.e., k) on
a subset of SMs (i.e., n). Since thread blocks of a kernel have similar behaviors
and the SMs are homogeneous, we expect this simplified design to perform as
well as the more flexible one.

//Run by each thread block of BE kernel 
//Global array num_blks[num_SMs] 
BE_Kernel(…) { 
    sm_id = get_sm_id(); 
    blk_id = atomic_get_blk_id(); 
    while(task_queue is non-empty) { 
          if( blk_id > num_blks[sm_id]) quit; 
          else { 
               task = pull_task(); 
               execute(task); 
} } }     

(a) Arbitrary thread
block yielding.

//n: number of SMs to yield blocks 
//k: number of blocks to yield 
BE_Kernel(…) { 
    sm_id = get_sm_id(); 
    blk_id = atomic_get_blk_id(); 
    while(task_queue is non-empty) { 
          if( sm_id < n && blk_id > num_blks[sm_id]) quit; 
          else { 
               task = pull_task(); 
               execute(task); 
} } }

(b) Less flexible thread block yield-
ing to reduce overhead.

Fig. 8: Transformed BE kernels to allow spatial co-run.

4.3 Initial Configuration Selection: Microbenchmark Driven

Due to the large spectrum of LC applications, FLARE cannot exhaustively pro-
file BE-LC co-run pairs to find the optimal configuration. Instead, FLARE esti-
mates the performance of BE-LC co-runs using microbenchmarks. Each kernel
is matched with microbenchmark configurations that best represent its solo-run
profiling statistics. Designing microbenchmarks that represent real-world ap-
plications is not easy, because the performance of a kernel is a↵ected by many
factors and the importance of each factor varies for di↵erent kernels. But the rel-
evant features should be those related to resources for which the kernels contend
when co-running. Out of the 120 performance counters of NVIDIA’s nvprof pro-
filer, we select the following 7 metrics which reflect or a↵ect resource contention:
L1, L2 cache hit rate, DRAM, L2, and L1 bandwidth utilization, arithmetic
intensity, and total number of instructions.

To produce microbenchmark programs (also called microbenchmark instances
in this paper) with varied features, we design a parameterized kernel with two
parts. Here a instance is a microbenchmark with unique values on the 7 met-
rics. The first part loads a 1-D array and the second part contains a loop that
performs pure arithmetic operations on the loaded data in each iteration. The
microbenchmarks use the following 4 parameters to sample the configuration
space: stride length to specify the distance between memory accesses from ad-
jacent threads and hence control spatial locality of each thread block, overlap
ratio to specifying the overlap between working sets of adjacent warps, iterations
to control arithmetic intensity by specifying the number of iterations of the loop
and the number of threads to run in total.
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With 9 di↵erent stride lengths from 0 to 128 elements (L2 cache line size), 5
di↵erent overlap ratios ranging from 0 to 0.2, iteration counts from 1 to 4, and
a fixed number 160K of threads, there are 180 di↵erent configurations of the
microbenchmark. We find that the range of these metrics covers most real world
applications by tuning these parameters.

Running all pairs of these microbenchmarks on all possible co-run configura-
tions gives a large input dataset for training models to get a sense of the patterns
that arise. Given 180 di↵erent instances of the microbenchmark, we co-run each
pair of them in all possible ways to spatially share the GPU, resulting in a to-
tal of 640 ⇥ 640 co-runs. Based on these results, FLARE has the following two
methods to select the initial configuration.
Linear Regression The linear model has 16 features: 14 profile features from
two microbenchmark instances and the SM configuration (i.e., n and k in Fig. 8b).
The linear regression maps that 16-element vector onto the 1-dimensional output
space describing either estimated latency or throughput. FLARE builds the lin-
ear model with these 16 features and trains the model using all the data from the
o✏ine co-runs through the least squares method. FLARE profiles one iteration
of a solo-run of the BE kernel and the LC kernel (when it becomes available)
to obtain the 14 characterization features and combine them with the other two
features to get the feature vector of co-run applications. Then FLARE uses the
linear regression models to estimate the co-run performance degradation given
each of the co-run configurations, and finally selects the one that satisfies QoS
and maximizes throughput. Since the linear models are quite lightweight, the
initial configuration-selection based on this method has a trivial overhead.

Neighbor

Order of Exploration

8 Iterations

Guided Neighbor

Order of Exploration

1 Iteration

Scalar Refinement

1 2 3

4 5

6 7 8

8 6 5

7 3

4 2 1

Ratio = 2.0 Ratio = 1.5

Microbenchmark Space

Fig. 9: Online search methods.

Nearest Neighbor Like the linear
regression method, the nearest neigh-
bor method also profiles one itera-
tion of the BE and LC kernels to
obtain their characterization features.
For each kernel, it then searches for a
profiling characterization feature vec-
tor among the microbenchmarks that
is the most similar to that kernel in
Euclidean distance. Specifically, each
value of the 7-element feature vectors
is normalized to the range (0,1), and
this method searches for the nearest

microbenchmark feature vector b to the feature vector of the real benchmark m.
The nearest neighbor method selects the microbenchmark for which the quan-
tity km � bk2 is minimized. Each pair of representatives has o✏ine-generated
performance results on all of the co-run configurations available, so this gives
another estimate of the performance degradation across the configuration space.
Based on this, FLARE selects the configuration that satisfies QoS and maximizes
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throughput. This method requires no training and incurs negligible runtime over-
head.

4.4 Online Refinement: Dynamic Reconfiguration

The final configuration we select should be one with the highest possible through-
put while still satisfying QoS. The initial configurations produced by the previ-
ously discussed methods are unlikely to match the globally optimal result every
time. Therefore, configurations will need further refinement based on real per-
formance feedback as shown in Fig. 7. FLARE starts at the initial configuration
and gradually explores the neighborhood to finally reach the optimal configura-
tion. FLARE includes two approaches to performing the search as follows.
Neighbor Search We demonstrate the idea of the first approach pictorially
in Fig. 9 (left panel). The cells represent configurations. Towards the bottom
left corner, the configurations give more resources to the LC kernel. The search
process starts with an anchor cell (colored in blue), which should initially cor-
respond to the configuration returned by the process described in Section 4.3.
It then explores all the 8 neighbor cells (the numbers show the order of the ex-
ploration), and selects the best as the new anchor cell for the next round. Here
the meaning of best is double-folded. When QoS is met, the best means that
the overall throughput is optimal around neighbors. Otherwise, the best stands
for the steepest decent of LC performance. This repeats until arriving at a cell
where QoS is met and its throughput is the highest around its neighbors.
Guided Neighbor Search While the previous approach explores its neighbor-
hood exhaustively, this approach searches first in the direction suggested by the
microbenchmark data. Each neighbor cell has corresponding microbenchmark
data, and therefore estimated QoS and throughput values associated with it.
This gives some order to the neighbors in terms of their expected configura-
tion performance, and we can simply explore the one with the best estimated
performance. For example, Fig. 9 (right panel) shows that according to the
microbenchmark data, the bottom right neighbor configuration (labeled by 1)
should produce the highest performance for the LC kernel. We then explore that
configuration and select it as the anchor for the next round. By leveraging the
microbenchmark data, we substantially decrease the number of steps required to
converge. This process continues until it reaches a configuration where the QoS
requirement of LC is satisfied and microbenchmark throughput is maximized.

5 Evaluation

5.1 Experimental Setup

We evaluate FLARE using an NVIDIA TITAN V GPU with 12GB onboard
memory hosted by a server with an Intel Xeon E3-1286 v3 CPU and 32GB
main memory. The system runs Ubuntu 16.04 with kernel version 4.4.0-141,
NVIDIA driver 410.48, and CUDA 10.0. We focus our evaluation on eleven
benchmarks and two real-world applications. The benchmarks are from three
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Fig. 10: Performance estimation error evaluation.

popular benchmark suites: Rodinia [5], SHOC [10], and NVIDIA’s CUDA SDK.
Two real applications, TC [1] and CN [23], represent deep learning inference
workloads. TC uses an LSTM [12] model to classify documents and CN uses a
GRU [9] model to predict the likely next character given an input string. Both
of these inference applications heavily utilize the GPU, and are classified as LC
applications. We also evaluate SPMV (SHOC), SC, PF, HOTSPOT, LBM and
BP (Rodinia) as LC applications and MD (SHOC), MM (CUDA SDK), NN,
LUD and CFD (Rodinia) as BE applications. Only the BE applications require
adaptation to yield resources, while the LC applications can run unmodified.

5.2 Evaluation Strategy

We evaluate the performance of our approaches under the following scenario.
The BE application runs continuously and consumes the entire GPU when no
LC application is present. When a LC application arrives, the BE application
yields part or all of the computation resources on the GPU to the LC appli-
cation and two applications start to run simultaneously on the device. The LC
application has a QoS deadline, and if its execution time exceeds this deadline
the QoS is violated. As soon as the LC kernel completes, the BE application
launches a kernel to reclaims all of the yielded hardware resources and resumes
running exclusively. For this scenario, we always launch the BE kernel first and
then start the LC kernel in a di↵erent CUDA stream. In order to compare with
CUDA Multi-Process Service (MPS), we observe that simple SM-based parti-
tioning gives the same performance results as MPS, and consider it as a possible
configuration. Note that unlike FLARE, MPS does not support dynamic re-
source allocation. Once the application is launched, its allocation of the GPU
resource cannot be changed. Thus, the MPS results in this section represent the
best possible results MPS can produce.

In this paper, throughput refers to the number of instructions executed per
microsecond. We define the overall throughput of a co-run pair as,

P c = (INSLC + INSc
BE) /T

c
LC (1)

where P c is the overall throughput of co-run, INSLC and INSc
BE are the num-

ber of instructions of LC and BE applications during co-run, and T c
LC is the per-

formance of a co-run LC kernel. We are going to compare this overall throughput
with the sequential throughput during T c

LC . When a LC kernel arrives, the BE
application will yield the GPU to the LC. Then the LC kernel starts to run and
will be finished in T s

LC . The BE resumes thereafter. But we only need to consider
the number of BE instructions, INStw

BE , finished in time window T c
LC � T s

LC ,
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because our interest is to see throughput improvement of co-run. Therefore, the
sequential throughput is given by

P s =
�
INSLC + INStw

BE

�
/T c

LC (2)

The ratio of P c to the sequential throughput P s gives us the throughput im-
provement.

We compare FLARE with the preemption-based approaches proposed in E↵-
iSha [6] and FLEP [31]. Since the two approaches are similar, we only use FLEP
as the baseline. FLARE proposes three ways to choose resource partitioning
configurations: model-based, online search-based, and hybrid. The model-based
approach incurs trivial runtime overhead but may choose a poor configuration
where a QoS target could possibly be missed, while the online search-based ap-
proach may need to explore many configurations to find a desirable one. This
evaluation will demonstrate that the flaws in these approaches prevent them
from achieving the best performance. Section 3 notes that the performance of
an application may not be linear in terms of allocated resource. Worse, the re-
source contention due to co-running makes it even more di�cult to statically
predict the optimal configuration. Since NN outperforms Linear Regression

in all cases, we only show the results on the former. A hybrid approach uses
the model-based approach to select an initial configuration followed by a online
search approach to refine the configuration. FLARE supports two online search
methods regardless of the initial configuration, namely neighbor search (NS)
and guided neighbor search (GNS). It leads to two hybrid approaches: NN NS

and NN GNS. Therefore, we evaluate 5 approaches included in FLARE: NN,
NS, GNS, NN NS and NN GNS.

5.3 Results

Due to limited space, we only show the results for 1.5X QoS, that is, the co-run la-
tency of a LC kernel cannot exceed 1.5X its solo-run time. Fig. 11 shows through-
put improvement of FLARE with the best performing approach, NN GNS, and
binary search-based SM allocation with MPS. Observe that FLARE increases the
average throughput improvement by 38.8% compared with FLEP. FLEP runs
the LC application first to guarantee QoS and then the BE application after the
LC application, thus missing co-running opportunities to improve throughput.
As the figure shows, if MPS supports dynamic resource allocation, its perfor-
mance could be close to FLARE. But FLARE still produces higher throughput
because it not only considers SM allocation but also enables thread block allo-
cation. We also measure the overheads of these 4 approaches. Fig. 12 shows the
runtime overheads to find the configurations. The NN approach only needs to
profile one iteration and then run a lightweight model. Hence it incurs negligible
overheads. Observe that with the help of NN choosing an initial configuration,
the hybrid approaches need substantially less time to find optimal configura-
tions. The average iterations of the 4 algorithms are 48, 41, 28, and 24. With
the guidance of microbenchmarks, the average overhead is about halved. For the
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co-run pair NN SC, the overheads of NS and GNS are 49 (NN) and 31 (GNS)
iterations. These numbers are reduced to 9 and 14 using the microbenchmark
guidance. The reason is that the initial configuration chosen by NN is closer to
the optimal configuration of these benchmarks. This fact also indicates that our
microbenchmarks capture crucial features of these benchmarks. It is important
to point out that final chosen configurations by dynamic searching satisfy QoS,
although the QoS may be violated along the way of the search process.

Fig. 11: Throughput Improvement at 1.5X QoS

Fig. 12: Online searching overhead at 1.5X QoS

Micro-benchmark Prediction Error: Fig. 10 shows the relative error of
the performance degradation of LC applications and the relative error of overall
throughput predicted by the NN method for each of the BE and LC kernels.
The relative error is defined as |D0 �D|/max(D,D0). The results demonstrate
the ine�ciency of model-based approaches to predict performance degradation.
For NN PF, the prediction error for throughput and the LC degradation is 89%
and 92%, respectively. They are 39% and 18% for MM PF. The reason is that
the applications have dramatically di↵erent properties, such as memory access
pattern and branch divergence, which are di�cult to accurately characterize us-
ing microbenchmarks. Fortunately, the microbenchmarks still capture important
features relevant to co-running for a number of benchmarks. For instance, the
prediction errors are as low as 3% (overall throughput) and 1% (LC latency)
for CFD BP. On average, the NN method produces 37% prediction error for
the throughput and 51% error for LC latency. Therefore, it is reasonable to use
the NN method to choose an initial configuration for online search. The NN PF
pair is an exception in all the pairs. No matter how the resources are allocated
to PF, the degradation is 15X, which is why the prediction errors are so large.
Real Applications: Fig. 11 show the average throughput improvement across
all the co-run pairs including real-world applications for di↵erent approaches.
Fig. 12 illustrates overheads to find resource configurations for real-world ap-
plications. The pair enclosed in parentheses indicates the initial configuration
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where MK is the number of maximum thread blocks an SM can host. Similar
to the results on benchmarks, NN incurs minimum overhead. NN and GNS

need a long search process evidenced by the substantial runtime overhead. NN,
unfortunately, cannot find any configuration that satisfy QoS and hence results
from the NN method are not included in these figures. Dynamic searching algo-
rithms achieve the optimal overall throughput in all the 10 cases. The average
throughput improvement of LSTM and GRU for 5 di↵erent pairs is 26% and 32%,
respectively. The microbenchmark-based methods outperform NN and GNS.
The overheads with microbenchmark guidance are about 60% of NN and GNS.

6 Related Work

Researchers have proposed architectural extensions to allow applications to co-
run e�ciently on the same GPU, with emphasis on cache sharing and bypass-
ing [17], fine-grained sharing [29], preemption [21,26], dynamic resource man-
agement [22], and spatial multi-tasking [2,3]. The work [29] deals with spatial
sharing through an enhanced scheduler (both thread block and warp level) to
guarantee QoS. They use a quota to represent the QoS constraint. They assume
that thread blocks are uniform in cost and the quota needs to reach zero at
each epoch to satisfy QoS. To further improve the performance, they implement
dynamic resource allocation by monitoring idle warps during each epoch. On
the one hand, those techniques remain to be carefully evaluated for implemen-
tation in real GPUs. On the other hand, those studies do not systematically
address reducing search overhead to find the best strategy for GPU sharing.
Studies [16] have demonstrated that multi-tasking on GPUs can better utilize
the hardware resource, but none of them predict performance degradation due
to the co-running. Software systems, such as FLEP [31] and E�Sha [6], focus on
lightweight preemption support but do not particularly study QoS enforcement.
Baymax [8] and Prophet [7] predict GPU workload performance and use task
re-ordering to handle QoS. Their approach to coordinate data transfers can be
directly incorporated in FLARE to form a more general solution. Since they
assume the GPUs are non-preemptable, they may use FLARE’s methodology to
further improve GPU utilization.
Another line of interesting work is practical GPU sharing in virtual environ-
ments, for which Hong et al. provide a comprehensive survey [14]. We briefly
discuss several closely related studies. FairGV [13] achieves system-wide weighted
fair sharing among GPU applications through collaborative scheduling and an
accurate accounting mechanism. Gloop [25] proposes a new programming model
to generate scheduling points in GPU kernels, which enables flexible suspend-
ing/resuming execution of GPU applications. Tian et al. propose a software
system to virtualize Intel on-chip GPUs for graphics workloads [27]. None of
these approaches have addressed fine-grained sharing or QoS of user-facing ap-
plications. To share the GPU memory GPUvm [24] partitions the GPU memory
into regions and assign the regions to virtual machines. GPUswap [15] automati-
cally coordinates GPU memory usage between applications even if the aggregate
workload does not fit in GPU physical memory.
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7 Conclusion

GPU sharing is a promising approach to improving hardware utilization, but re-
source contention may degrade the performance of the co-running latency-critical
applications to violate QoS. In this paper, we demonstrated the complexities of
partitioning GPU resources to enforce QoS and maximize throughput. To ad-
dress the challenges, we proposed a software system named FLARE to enable and
configure spatial GPU sharing between latency-critical and best-e↵ort applica-
tions through kernel transformation, micro-benchmark guided partitioning and
online configuration search. The experiment results showed 39% improvement
on the overall throughput on 11 benchmarks and 2 real-world applications over
existing systems. In the future, we plan to extend FLARE to address scenarios
in which multiple latency-critical applications share the same GPU.
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